Globally, scientists believe habitat loss is associated with emerging infectious diseases, or EIDs, spreading from wildlife to humans, such as Ebola, West Nile virus, SARS, Marburg virus and others. The Auburn team developed a new hypothesis, the coevolution effect, which is rooted in ecology and evolutionary biology, to explain the underlying mechanisms that drive this association.
Schwartz said the team integrated ideas from multiple aspects of biology, including disease ecology, evolutionary biology and landscape genetics, to develop the new hypothesis on why diseases are more likely to spill over from wildlife to humans in deforested habitats.
“We provide a testable hypothesis that we hope other researchers will try to test with their data, as we will be doing,” Schwartz said. “Whether or not these studies fully support this new hypothesis, we anticipate it will provide a new perspective that other researchers in this field can use and build on, to ultimately push this field forward to understand disease spillover and prevent it.”
The field of disease ecology is heavily based on a hypothesis known as the dilution effect, which was released at the turn of this century. It is essentially the idea that biodiversity conservation can protect humans from emerging infectious diseases. Zohdy said the dilution effect highlights the critical role that wildlife conservation can play in protecting human health and has transformed the understanding of zoonotic infectious diseases.
Source: New hypothesis links habitat loss and the global emergence of infectious diseases