Increasing rain and vegetation in the Sahara with large-scale energy projects

A new study led by University of Maryland (UMD) scientists conducted novel climate and vegetation model experiments to show that wind and solar farms could lead to a more than doubling of rainfall in the Sahara and an increase of up to about 20 inches (500 mm/year) in the Sahel, a semi-arid transition region that lies south of the Sahara.

Large-scale wind and solar farms in the Sahara could provide enough energy to replace the fossil fuel energy used currently and in the foreseeable future. The primary effect of such renewable energy farms would be a substantial reduction of human-generated greenhouse gas emissions and the resulting mitigation of climate change. However, such large-scale wind and solar farms could also affect regional climate due to changes to land surface properties. An international group of researchers, led by UMD scientists, explored such climate impacts by including bidirectional vegetation feedbacks between a global climate model and a land/vegetation model. Their findings were published today in Science.

Source: Large-scale wind and solar farms in the Sahara would increase rain and vegetation